International Symposium on Water Sustainability 2022

Understanding the value of urban rivers from the public's perspective

HUA Junyi

School of International Affairs and Public Administration Ocean University of China

Jul 31, 2022

Ecosystem services: provisioning, regulating, cultural, and supporting

Ecosystem services are the benefits people obtain from ecosystems (Millennium Ecosystem Assessment, 2005). **Ecosystem services** are the direct and indirect contributions of ecosystems to human well-being (TEEB, 2010).

Previous research – Increasing recognition of ecosystem services and urban rivers

- Public preferences and assigned importance for various ecosystem services (Asah et al., 2014; Bertram et al., 2015; Guo et al., 2018; Larson et al., 2013; Rey-Valette et al., 2017)
- Preference and willingness to pay for urban river conservation (Bergstrom & Loomis, 2017; Brouwer et al., 2016; Che et al., 2014; Dai et al., 2021; Vollmer et al., 2017)

Journal of Environmental Management Volume 223, 1 October 2018, Pages 478-488

Research article

Public perception towards river and water conservation practices: Opportunities for implementing urban stormwater management practices

Yuling Gao * 은 쯔, Sarah P. Church *, Sara Peel ^b, Linda S. Prokopy *

Show more \checkmark

+ Add to Mendeley 😪 Share 🗦 Cite

```
https://doi.org/10.1016/j.jenvman.2018.06.059
```

Get rights and content

- Highlights
- Public environmental awareness increased over the last decade studied
- People value natural features of rain gardens and support public implementation.
- Reducing stormwater charges for adopters of practices can be an incentive.
- Emphasizing functionality of green practice helps motivate its adoption

- Spatial preferences and place attachment play a key role in public preferences
- The study provides important info to guide investment decisions in river restoration

2

Public perception of and preference for urban rivers

Research questions:

- Perception of importance and performance of ecosystem services
- Willingness-to-pay for hypothetical restoration
- Preference heteorogeneity

Research significance:

- To understand societal dependence on urban natural environments
- To incoperate social perspectives into natural perspectives
- To provide scientific evidence for decision-making

Guangzhou, China

Urban rivers in Guangzhou, China

Urban rivers in Guangzhou, China

CATEGORY	ABBR.	DESCRIPTION							
Provisioning	WATERSUPPLY	Supplying fresh water for multi-purposes							
	TRANSPORTATION	Transporting goods and people							
Regulating	PURIFICATION	Purifying water pollutants							
	FLOODCONTROL	Mitigating floods							
	COOLING	Alleviating high temperature in summer							
Supporting	BIODIVERSITY	roviding habitats for diverse floral and faunal species							
	SYMBOL	Representing symbols of the city and local communities							
	EDUCATION	Serving as subject matter of education							
Culture	TOURISM	Promoting river-related tourism							
Cultural	RECREATION	Providing recreational opportunities							
	HERITAGE	Representing cultural and historical heritage							
	AESTHETICS	Representing natural beauty and aesthetics							
Ecosystem services provided by urban rivers in Guangzhou									

Which should be prioritized?

How important? (Demand) How well provided? (Supply)

Which ecosystem services should be prioritized?

Residents' perspective

- services provided by urban rivers
- public perceptions
- perceived importance services

Importance-performance gap

	Importance		Perfor	mance		t-test		
Service	Mean	S. D.	Mean	S. D.	I-P	t	p	
WATERSUPPLY	3.644	0.987	3.298	1.161	0.346	4.6261	0.0000	
TRANSPORTATION	3.342	1.011	3.149	1.207	0.193	2.5548	0.0112	
PURIFICATION	4.320	0.709	3.349	1.105	0.971	13.0082	0.0000	
FLOODCONTROL	4.066	0.761	3.666	1.049	0.400	6.0443	0.0000	
COOLING	3.956	0.768	3.560	1.067	0.396	5.6275	0.0000	
BIODIVERSITY	3.887	0.787	3.389	1.167	0.498	5.9359	0.0000	
SYMBOL	3.887	0.800	3.371	1.081	0.516	7.2081	0.0000	
EDUCATION	3.913	0.769	3.422	1.024	0.491	6.8524	0.0000	
TOURISM	3.491	0.922	3.455	1.084	0.036	0.4606	0.6454	
RECREATION	3.855	0.851	3.684	1.073	0.171	2.1946	0.0290	
HERITAGE	3.949	0.861	3.949	0.969	0.000	0.0000	1.0000	
AESTHETICS	3.996	0.790	3.647	1.102	0.349	4.5350	0.0000	
Mean	3.859	0.535	3.495	0.826	0.364	6.8471	0.0000	

Lai, I. K. W., & Hitchcock, M. (2015). Importance–performance analysis in tourism: A framework for researchers. *Tourism Management*, 48, 242-267. Martilla, J. A., & James, J. C. (1977). Importance-performance analysis. *The Journal of Marketing*, 41(1), 77-79.

Prioritization

Higher priority

Тор

• Water purification

Second

- Biodiversity
- Education
- Symbol

Lower priority

Economic

- Tourism
- Transportation
- Water supply

Important & good

Regulating

- Cooling
- Flood control

Cultural

- Natural beauty
- Heritage

A little too much

• Recreation

Case 2: Residents' heterogenous preferences and willingness to pay for restoring urban river attributes in Guangzhou and Brussels

- Stated preference methods Discrete choice experiments
- Polynomial attribute attendances: always, often, seldom, never
- Mixed logit models with separate parameters for attendance levels

Attributes	Levels				
	Limited				
Biodiversity	(BIO1) 50% increase in plant and animal life				
	(BIO2) 75% increase in plant and animal life				
	Covered, highly-engineered channel				
Morphological feature	(MORPH1) Open, highly-engineered channel				
	(MORPH2) Open, more naturalized channel				
	Bad, highly polluted				
Water quality	(WATER1) Average, slightly polluted				
	(WATER2) Good, swimmable				
Decreational facilities	Unavailable				
Recreational facilities	(REC) Available				
	No cost				
Household cost	Guangzhou: ¥5, ¥10, ¥20, ¥30, ¥40, ¥50 monthly				
	Brussels: €10, €25, €50, €75, €100, €125 annually				

285 respondents in Guangzhou, 299 respondents in Brussels Each respondent:

- answered 6 choice cards
- stated attendance levels to each attribute

Choice card example

Hua, J., Chen, W. Y., Liekens, I., & Cho, F. H. T. (2021). Partial attribute attendance in environmental choice experiments: A comparative case study between Guangzhou (China) and Brussels (Belgium). *Journal of Environmental Management, 285*, 112107. doi:10.1016/j.jenvman.2021.112107

Table 6

Results of MIXL_SANA: extended MIXL models with separate parameters for different SANA.

		Guangzhou					Brussels			
		Always	Often	Seldom	Never		Always	Often	Seldom	Never
Mean										
ASC	3.078**					1.113**				
	(0.539)					(0.321)				
COST		-0.049**	-0.020**	0.002	0.004		-0.048**	-0.014**	0.003	0.008
		(0.008)	(0.005)	(0.005)	(0.012)		(0.003)	(0.003)	(0.003)	(0.004)
BIO1		0.668**	0.472**	-0.191	-0.998		1.182**	0.737**	-0.001	0.747
		(0.247)	(0.155)	(0.176)	(0.794)		(0.232)	(0.184)	(0.436)	(0.624)
BIO2		1.716**	0.558**	-0.072	-0.693		1.894**	1.141**	-0.020	0.412
		(0.287)	(0.16)	(0.175)	(0.724)		(0.247)	(0.20)	(0.479)	(0.583)
MORPH1		0.654**	0.018	0.019	-0.273		0.974**	0.551**	0.779*	0.465
		(0.232)	(0.131)	(0.181)	(0.663)		(0.272)	(0.210)	(0.288)	(0.552)
MORPH2		1.102**	0.077	-0.153	-1.707*		1.685**	0.974**	0.647*	-0.313
		(0.288)	(0.146)	(0.245)	(0.735)		(0.293)	(0.222)	(0.262)	(0.562)
WATER1		1.388**	0.600**	0.105	0.046		2.446**	1.120**	1.077*	0.032
		(0.147)	(0.148)	(0.338)	(0.866)		(0.230)	(0.188)	(0.531)	(0.995)
WATER2		2.485**	0.759**	0.595	-14.924		3.720**	1.791**	1.126*	1.132
		(0.240)	(0.183)	(0.460)	(440.135)		(0.294)	(0.245)	(0.509)	(0.769)
REC		1.095**	0.366**	-0.032	-0.366		1.009**	0.867**	0.343*	-0.023
		(0.197)	(0.126)	(0.120)	(0.335)		(0.335)	(0.156)	(0.174)	(0.231)

Attribute attendance

	Guangzhou			Brussels				
Attributes	Attendance	Non-attendance	Partial attendance	Attendance	Non-attendance	Partial attendance		
Biodiveristy	64.2%	35.8%	42.5%	88.6%	11.4%	50.5%		
Morphological Feature	21.4%	78.6%	0.0%	95.3%	4.7%	67.2%		
Water Quality	90.5%	9.5%	36.1%	98.0%	2.0%	41.5%		
Recreational Facilities	53.0%	47.0%	34.7%	84.0%	16.1%	68.9%		
Cost	54.0%	46.0%	37.5%	69.6%	30.4%	29.4%		

Results

	Guangzhou				Brussels				
	MIXL		MIXL_SANA		MIXL		MIX	IL_SANA	
	Mean	95% conf. int.	Mean	95% conf. int.	Mean	95% conf. int.	Mean	95% conf. int.	
Alternative specific constant	1497.07	(452.56, 2541.64)	302.71	(145.58, 459.85)	56.25	(21.25, 91.26)	33.12	(13.29, 52.96))
50% increase of plants and animals	86.66	(4.5, 168.77)	35.93	(16.38, 55.48)	43.34	(32.31, 54.36)	23.53	(15.32, 31.73))
75% increase of plants and animals	190.14	(82.55, 297.73)	61.25	(36.03, 86.48)	68.14	(55.69, 80.58)	36.73	(27.01, 46.45))
Open, highly-engineered channels	0		13.29	(3.24, 23.34)	34.28	(22.62, 45.94)	20.36	(11.58, 29.15))
Open, more naturalized channels	0		22.41	(9.45, 35.36)	56.96	(43.76, 70.17)	30.41	(20.8, 40.03)	
Slightly polluted water	367.6	(148.19, 587.02)	94.49	(56.35, 132.62)	81.83	(67.87, 95.79)	52.07	(38.31, 65.83))
Good, swimmable water	603.23	(257.26, 949.16)	154.1	(95.84, 212.36)	125.23	(107.2, 143.26)	79.48	(60.6, 98.36)	
Provision of recreational facilities	100.47	(20.54, 180.39)	37.45	(19.33, 55.58)	27.26	(18.15, 36.37)	16.66	(9.93, 23.40)	

Marginal WTP estimates (Euro/household/year)

WTP (preference):

- Guangzhou: Water quality > Biodiversity > Recreational facilities > Morphological feature
- Brussels: Water quality > Biodiversity ≈ Morphological feature > Recreational facilities

Findings:

- Guangzhou: greater non-attendance, very low attendance to morphological features, only high attendance to water quality
- Brussels: high attendance to all attributes
- Both: Highest attendence & WTP Water quality
- Attribute attendance is positively associated with perceived importance of ecosystem services (Ordered Logit).
- Accounting for attribute attendance improves the goodness-of-fit of models and affects WTP estimates.

Implications:

- Need to consider public knowledge on environment goods to protect in applications of environmental choice experiments in China
- Need to enhance public understanding of details and importance of environmental goods and services for increasing public engagement in China

Final remarks

- How city residents value urban rivers
- Two-dimensional perceptions of river ecosystem services
- Heterogeneity of preference and willingness-to-pay for river restoration
- Dominant "water quality"

