Reducing humanity's water footprint Challenges from a global perspective

Arjen Y. Hoekstra | www.ayhoekstra.nl

WEF's Global Risk Report 2016

Top 10 risks in terms of

Impact

Failure of climate-change mitigation and adaptation

Weapons of mass destruction

- Large-scale involuntary migration
- Energy price shock

- Biodiversity loss and ecosystem collapse
- Fiscal crises
- Spread of infectious diseases
- Asset bubble
- Profound social instability

Sustainability of water use
 Water use efficiency
 Fair sharing of water
 Resource security

The Coca Cola Company

New Delhi, 4 Oct 2006

Water footprint of a Coke

Water footprint of a 0.5 litre PET-bottle coke as produced in the Netherlands

0.44 litre water content27.6 litre for sugar5.3 litre for PET bottle and closure3.0 litre for other ingredients & overheads

36 litre total

The water footprint of the Chinese consumer

The water footprint of the Chinese consumer

alfalfa

Top-6 water consumers California:

Animal feed from California

- 1. animal feed (e.g. alfalfa)
- 2. almonds & walnuts
- 3. residential areas

Food Grows Where Water Flows

ACRE-FEET OF WATER

are used to grow the U.S. alfalfa exported to China every year.

THOUSAND THOUSAND

AMERICAN FAMILIES

use the same amount of water annually that's used to grow alfalfa in California.

The water footprint of a product

Green water footprint

volume of rainwater consumed (evaporated)

Blue water footprint

volume of surface or groundwater consumed (evaporated)
= net water abstraction

Grey water footprint volume of surface or groundwater polluted

The maximum sustainable green and blue water footprint

Grey water footprint

The volume of water required to assimilate pollutants

Grey water footprint = (Load / Critical load) × River flow

Max. sustainable grey water footprint = River flow

UNIVERSITY OF TWENTE.

Source: Hoekstra et al. (2011) The Water Footprint Assessment Manual, Earthscan, London, UK

The blue water footprint of humanity: not sustainable

Blue water scarcity = blue WF / maximum sustainable blue WF

Source: Mekonnen & Hoekstra (2016)

We need to agree on water footprint caps per river basin (specified per month)

Water pollution level = grey WF / maximum sustainable grey WF

Source: Mekonnen & Hoekstra (2017)

The water footprint of humanity: not efficient

Spatial differences in the water footprint of wheat

Reduction of water footprints of crops to benchmark levels set by the best 25% of global production, will result in a global water saving of 40%.

UNIVERSITY OF TWENTE.

Source: Mekonnen & Hoekstra (2014)

The water efficiency of our food

Global average water footprint

		litre/kcal
	starchy roots	0.5
>	cereals	0.5
	sugar crops	0.7
	pulses	1.1
	vegetables	1.3
	fruits	2.1
	pork	2.2
	poultry	3.0
>	beef	10.2

Source: Mekonnen & Hoekstra (2012) A global assessment of the water footprint of farm animal products, *Ecosystems*

The water efficiency of our food

The WF of animal production is 29% of the WF of the agricultural sector.
 The WF of the agricultural sector is 92% of the total WF of humanity.

UNIVERSITY OF TWENTE.

Source: Mekonnen & Hoekstra (2012) A global assessment of the water footprint of farm animal products, *Ecosystems*

The water efficiency of our food – example Hong Kong

Diet scenarios:

REF Reference period (1996-2005)

HEALTHY Healthy diet, based on Chinese dietary guideline

PESCO-VEG Pesco-vegetarian diet

VEG Vegetarian diet

UNIVERSITY OF TWENTE.

Source: Vanham et al. (2017) Journal of Hydrology Special Issue on Water in megacities: new risks, new solutions

Stop showering = water saving of 50 litre/day

Stop eating meat = water saving of 800 litre/day

The two separate worlds of water and energy

► The water sector is becoming more energy-intensive

- desalination
- pumping deeper groundwater
- large-scale (inter-basin) water transfers
- ► The energy sector is becoming more water-intensive
 - shale oil & gas (fracking)
 - tar sands & oil / kerogen shales
 - biomass

UNIVERSITY OF TWENTE.

Source: Hoekstra (2013) The Water Footprint of Modern Consumer Society, Routledge, London, UK

The water efficiency of energy supply

Source: Mekonnen & Hoekstra (2011)

The water efficiency of electricity

Source: Mekonnen, Gerbens-Leenes & Hoekstra (2015)

The water footprint of electricity in 2035 – IEA scenarios

The water footprint of humanity: not fairly distributed

UNIVERSITY OF TWENTE.

Source: Hoekstra & Mekonnen (2012) The Water Footprint of Humanity, PNAS

The water footprint of humanity: international dependencies

On average, 26% of the water footprint of national consumption lies outside the country

Source: Hoekstra & Mekonnen (2012) The Water Footprint of Humanity, PNAS

Virtual water transfers in China

UNIVERSITY OF TWENTE.

Source: Hoekstra & Chapagain (2008)

Virtual water transfers in China

Fig. 10. Net VW transfer from North to South China resulting from inter-regional crop trade.

Sources: Zhuo et al. (2016)

Future under growth and climate change

UNIVERSITY OF TWENTE.

Source: Hoekstra (2012)

Wise water governance

- ► water footprint caps by river basin
- ► water footprint benchmarks by product
 - ► best available technology and practice
 - ► water disclosure
 - product transparency
- ► fair water footprint shares by consumer
 - ► national water footprint reduction targets
- greater levels of (water-food-energy) self-sufficiency

The need for contraction and convergence

Water footprint per capita (m³/yr/cap)

The Water Footprint Assessment Manual Setting the Global Standard

е

Arjen Y. Hoekstra, Ashok K. Chapagain, Maite M. Aldaya and Mesfin M. Mekonnen

Web www.ayhoekstra.nl Twitter @AYHoekstra

The Water Footprint Assessment Manual Setting the Global Standard

水足迹评价手册

 (荷) Arjen Y. Hoekstra
 (尼) Ashok K. Chapagain
 (西) Maite M. Aldaya
 (埃塞) Mesfin M. Mekonnen 著 刘俊国 曾昭 赵乾斌 马 坤 臧传富 译

🗒 科学出版社

The Water Footprint Of Modern Consumer Society 现代消费社会水足迹

〔荷〕 Arjen Y. Hoekstra 著 吴普特 等译

💾 斜学出版社