Big Data: Introduction and Applications

August 20, 2015 HKU-HKJC ExCEL3 Seminar Michael Chau, Associate Professor School of Business, The University of Hong Kong

Big Data

 Ample opportunities for business organizations and governments to provide better services and gain managerial and strategic insights by gathering, cleaning, and analyzing these "Big Data".

Over the past years...

- Data storage has grown exponentially
- □ Computation capacity has risen sharply
- □ Network bandwidth has increased greatly

What is Big Data?

- □ It is not just big!
- □ Four Vs
 - Volume
 - Velocity
 - Variety
 - Veracity

Big Data

- Massive amount data are being generated at an unprecedented speed from various sources:
 - online transactions
 - mobile applications
 - sensors
 - images, audio, video
 - social media including blogs, weibos, facebook, and forums

The Data Size Is Getting Big, Bigger...

- Hadron Collider 1
 PB/sec
- Boeing jet 20 TB/hr
- Facebook 500 TB/day.
- YouTube 1 TB/4 min.
- The proposed Square Kilometer Array telescope (the world's proposed biggest telescope) – 1 EB/day

Name	Symbol	Value
Kilobyte	kB	10 ³
Megabyte	MB	10 ⁶
Gigabyte	GB	10 ⁹
Terabyte	TB	1012
Petabyte	PB	10 ¹⁵
Exabyte	EB	1018
Zettabyte	ZB	10 ²¹
Yottabyte	YB	1024
Brontobyte*	BB	10 ²⁷
Gegobyte*	GeB	1030

How governments see big data?	Big Data Considerations
 United Nations' Global Pulse project Analyze social media and big data for sustainable development and humanitarian action 	 You can't process the amount of data that you want to because of the limitations of your current platform. You can't include new/contemporary data sources (e.g., social media, RFID, Sensory, Web, GPS, textual data) because it does not comply with the data schema. You need to (or want to) integrate data as quickly as possibl to be current on your analysis. You want to work with a schema-on-demand data storage paradigm because the variety of data types. The data is arriving so fast at your organization's doorstep that your analytics platform cannot handle it.

Models and Technologies

□ Traditional

- Data mining, data warehouse
- Big Data Analytics
 - Unstructured data from multiple sources
 - Real-time analytics
 - Complex statistical analysis
 - Distributed computing

Big Data Vendors

- Big Data vendor landscape is developing very rapidly
- □ A representative list would include
 - Cloudera cloudera.com
 - MapR mapr.com

. . .

- Hortonworks hortonworks.com
- Also, IBM (Netezza, InfoSphere), Oracle (Exadata, Exalogic), Microsoft, Amazon, Google,

Software, Hardware,

25

Example: Amazon

- Predicts what customers will buy and manage their inventory
- Customers who bought this item, also bought these..."
- Anticipatory Shipping: shipping an item to a customer in anticipation that this customer will order that product – will it work?

Example: Hewlett-Packard

- □ Analyzes data of 330,000 employees to predict who have a high risk of leaving the job
- □ Results in an estimated saving of \$300 million

Example: Google Flu Trend

- Google Flu Trend: Predicts influenza breakout based on the occurrences of relevant search terms in search data
- Successfully predicts regional outbreaks of flu up to 10 days before they were reported by the CDC (Centers for Disease Control and Prevention).

Example: Germany Soccer

 Match Insights: Collects and analyzes massive amounts of player performance data (including video data)

Example: Macy's

- Analyzes a vast amount of customer data ranging from visit frequencies and sales to style preferences and personal motivations.
- Adjusts pricing in near-real time for millions of items, based on demand and inventory
- Sends targeted and customized direct mailings to customers

Example: US Law Enforcement

□ Challenges

- Isolated databases
- Lack of analytics capability
- □ COPLINK system
 - Implemented in many police departments in the US
 - Database linking
 - Association mining

31

32

Example: US Law Enforcement

- Predictive policing
 - Predict time and location with high-probability of criminal activities
 - Prevent crimes before they happen
- □ Crime mapping
 - RAIDS Online
 - Connects law enforcement with the community to reduce crime and improve public safety

Different Types of Social Media

- Collaborative projects (e.g., Wikipedia, Wiktionary)
- Blogs and microblogs (e.g., Twitter, Weibo)
- Content communities (e.g., YouTube)
- Social networking sites (e.g., Facebook)
- Virtual game worlds (e.g., World of Warcraft)
- Virtual social worlds (e.g., Second Life)

- □ Analyze and visualize social media
 - http://research.larc.smu.edu.sg/palanteer/
 - http://research.larc.smu.edu.sg/palanteert/

